The detection of Earth-mass planets around active stars
نویسندگان
چکیده
منابع مشابه
Formation and Detection of Earth Mass Planets around Low Mass Stars
We investigate an in-situ formation scenario for Earth-mass terrestrial planets in short-period, potentially habitable orbits around low-mass stars (M∗ < 0.3M⊙). We then investigate the feasibility of detecting these Earth-sized planets. We find that such objects can feasibly be detected by a ground-based transit survey if their formation frequency is high and if correlated noise can be control...
متن کاملSpectral fingerprints of Earth-like planets around FGK stars.
We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of featur...
متن کاملDetecting transits from Earth-sized planets around Sun-like stars
Context. Detecting regular dips in the light curve of a star is an easy way to detect the presence of an orbiting planet. CoRoT is a Franco-European mission launched at the end of 2006, and one of its main objectives is to detect planetary systems using the transit method. Aims. In this paper, we present a new method for transit detection and determine the smallest detected planetary radius, as...
متن کاملThe Number of Planets around Stars
Based on the large number of elliptical planetary nebulae I argue that ∼ 55% of all progenitors of planetary nebulae have planets around them. The planets spin up the stars when the later evolve along the red giant branch or along the asymptotic giant branch. The arguments, which were presented in several of my earlier works, and are summarized in the paper, suggest that the presence of four ga...
متن کاملRemote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.
The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2014
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/201424025